The peak in the nonlinear ac resistivity of granular superconductors

Mai Suan Lia, Hoang Zungb,1, D. Domínguezc

aInstitute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, 02-668 Warsaw, Poland
bVietnam National University, 227 Nguyen Van Cu, Ho Chi Minh City
cCentro Atómico Bariloche, 8400 San Carlos de Bariloche, Rio Negro, Argentina

Abstract

We model s-wave and d-wave disordered granular superconductors with a three-dimensional random network of Josephson junctions with finite self-inductance. The nonlinear ac resistivity ρ_2 was calculated numerically. We find a peak in ρ_2 as a function of temperature, in good agreement with recent experiments. The value of ρ_2 at the peak temperature T_p depends on the current amplitude I_0 as a power law, $\rho_2(T_p) \sim I_0^\alpha$. We find that α depends on the self-inductance and current regimes. In the weak current regime is $\alpha = 0.5 \pm 0.1$ and independent of the self-inductance for both of s- and d-wave materials. In the strong current regime, α depends on the screening, with $\alpha \approx 1$ for some interval of inductance in agreement with measurements in d-wave high T_c ceramic superconductors.

Key words: granular superconductors; pi junctions; d-wave superconductivity; Josephson networks

Recently, Yamao et al.[1] have measured the ac linear resistivity ρ_0 and the nonlinear resistivity ρ_2 of ceramic superconductor YBa$_2$Cu$_3$O$_y$. ρ_2 is defined as the third coefficient of the expansion of the voltage $V(t)$ in terms of the external current I_{ext} as $V = \rho_0 I_{ext} + \rho_2 I_{ext}^3 + \ldots$. When the sample is driven by an ac current $I_{ext}(t) = I_0 \sin(\omega t)$, one can obtain ρ_2 from

$$\rho_2 = -\frac{4V_3'}{I_0^3}, \quad V_3' = \frac{1}{2\pi} \int_{-\pi}^{\pi} V(t) \sin(3\omega t) d(\omega t).$$ \hspace{1cm} (1)

Yamao et al. have found that ρ_2 has a maximum value at a temperature T_p near the intergrain ordering temperature of their sample. They observed that ρ_2 depends with I_0 as $\rho_2(T_p) \sim I_0^\alpha$, with $\alpha \approx 1.1$.

It is now believed that the gap of high-T_c superconductors has d-wave symmetry. This makes possible to have weak links with negative Josephson coupling between the superconducting grains in high-T_c ceramics, which are called π-junctions [2]. Therefore, they can be modeled with a network of Josephson junctions with random couplings, given by the hamiltonian [3–5]

\[H = -\sum_{<ij>} J_{ij} \cos(\theta_i - \theta_j - A_{ij}) + \frac{1}{2L} \sum_{p} \Phi_p^2. \] \hspace{1cm} (2)

Here θ_i is the superconducting phase of the grain at the i-th site of a cubic lattice, J_{ij} is the Josephson coupling between grains, and L is the self-inductance of a loop (mutual inductances are neglected). The first sum is taken over all nearest-neighbor pairs and the second sum is taken over all elementary plaquettes on the lattice. The total magnetic flux threading through the p-th plaquette is $\Phi_p = \frac{\Phi_0}{2\pi} \sum_{<ij>} A_{ij}$ with $A_{ij} = \frac{2\pi}{\Phi_0} \int_{<ij>} A(\mathbf{r}) d\mathbf{r}$. We model the d-wave superconducting case by taking J_{ij} as a random variable equal to J or $-J$ with equal probability (representing 0 and π junctions respectively), and also the s-wave superconducting case by taking $J_{ij} > 0$ and uniformly distributed in $[0,2J]$. The effect of screening currents is characterized by the dimensionless inductance $\tilde{L} = (2\pi/\Phi_0)^2 L J$. The d-wave model has been able to reproduce the paramagnetic Meissner effect [3] observed experimentally in ceramic high-T_c ceramics [6]. Kawamura [4,5] proposed that there is a chiral glass phase, which has been seen experimentally in the nonlinear ac magnetic susceptibility [7] and in the aging phenomenon [8].

1 E-mail:dung@hcmuns.edu.vn
To calculate transport properties we use the resistively shunted junction model in which the dissipative ohmic current due to an intergrain resistance R and the temperature dependent Langevin noise current are added to the Josephson current [3]. This leads to a set of dynamical equations for θ_i and A_{ij} [3], which are solved numerically for a given temperature T and driving current $I_{ext} = I_0 (\sin \omega t)$ [9,10]. The temperature dependence of the nonlinear resistivity ρ_2 for different values of I_0 is shown in Fig. 1 for the s-wave system (upper panel) and for the d-wave system (lower panel) for $L = 1, \omega = 0.001$ and $8 \times 8 \times 8$ samples.

Fig. 1. Temperature dependence of the nonlinear resistivity $\rho_2 \propto V_{j}^{2}/I_{0}^{2}$ for the s-wave (upper panel) and the d-wave case (lower panel) for $L = 1, \omega = 0.001$ and $8 \times 8 \times 8$ samples.

 dependently on L, as it is shown in Fig. 2.

In conclusion, we have calculated the non-linear ac resistivity exponent α for s and d-wave granular superconductors, obtaining two distinct current regimes. For weak currents α is independent of the screening strength and of types of pairing symmetry, while in the opposite case this exponent depends on L. Since real current is $I = \frac{2e}{h}I_0$, and $J \sim 10^2 K$, then for $I_0 \sim 0.1$ we have $I \sim 10^{-2}$ mA. The experiments of [1] used a current $I \sim 10$ mA. This suggests that they were performed in the SCR. A typical value of inductance for ceramics is L are bigger than 3 [11]. As seen from Fig. 2, the value of α in the SCR for $1 < L < 5$ agrees very well with the experimental value.

References