Magnetism in RMn$_4$Al$_8$ (R=Sc,Sm, Tb, Dy and Ho) compounds: Possible role of Mn

R. Nirmala a, V. Sankaranarayanan a, K. Sethupathi a, T. Geethakumary b, MC. Valsakumar b, Y. Hariharan b, AV. Morozkin c

aDept. of Physics, Indian Institute of Technology Madras, Chennai 600 036 India
bMaterial Sciences Division, IGCAR, Kalpakkam, Chennai, India
cDept. of Chemistry, Moscow State University, Moscow, Russia

Abstract

The ac magnetic susceptibility, electrical resistivity and thermoelectric power results of RMn$_4$Al$_8$ compounds are discussed. The compounds with magnetic rare earths order antiferromagnetically at low temperatures. Electrical transport is dominated by electron-phonon scattering at high temperatures. The magnetism in these compounds can be explained in terms of the Mn site occupancy and the Mn-Mn distances along c-axis.

Key words: Rare earth intermetallics; Magnetic properties; Electrical transport;

1. Introduction

Extensive studies on RT$_4$Al$_8$ (R = Rare earth, T = Transition metal) compounds indicate a wide variation in the magnetic behaviour of the rare earth and 3d transition elements [1]. Though the rare -earths order antiferromagnetically below, say, 30 K, the 3d elements behave differently. Fe in RFe$_4$Al$_8$ has a localized moment (effective moment of 4.4 mB) and orders independently of the rare earth sublattice. Mn in RMn$_4$Al$_8$ has also a localized moment (1 mB) but orders only when the rare earths order. Cr in RCr$_4$Al$_8$ has no moment of its own, but it has an induced moment by its magnetic rare earth neighbours. Cu in RCu$_4$Al$_8$ is non-magnetic. This nature of 3d elements in the RT$_4$Al$_8$ compounds led to a series of investigations.

2. Experimental

The said compounds were prepared by electric arc melting under argon atmosphere starting from stoichiometric elements and vacuum annealed for a span of 10 days at 1073 K. They were characterized by X-ray diffraction experiments at room temperature and ac magnetic susceptibility, electrical resistivity and thermoelectric power measurements were carried out.

3. Results and Discussion

The X-ray diffractograms obtained at room temperature reveal the single phase nature of the samples with Bragg peaks conforming to the cubic ThMn$_2$-type structure. The lattice parameters vary according to lanthanide contraction. The ac magnetic susceptibility plots of the RMn$_4$Al$_8$ compounds are shown in Fig.1. All compounds with magnetic rare-earths show a typical para- to antiferromagnetic transition at low temperatures. ScMn$_4$Al$_8$ does not show any transition down to 4.2 K. The electrical resistivity is metallic.
and the data for DyMn$_4$Al$_8$ is shown in fig. 2 for reference. Electrical resistivity has a small, but appreciable electron - electron scattering contribution at low temperatures and it follows the conventional Bloch - Gruneisen expression explaining the electron - phonon scattering at high temperatures. The Debye temperature values obtained from the fit are comparable with that of RMn$_4$Al$_8$ (R = La and Y) compounds[2]. Thermopower of these compounds has a linear dependence on temperature above 150 K and exhibit a phonon drag-like feature at low temperatures[Fig. 3]. The magnetic behaviour of RMn$_4$Al$_8$ (R = Sm, Tb, Dy and Ho) compounds is attributed to the Mn-Mn interactions along c-axis, forming 1-D like spin chains as well as to the site interchange between Mn and Al atoms.

References