Electronic heat capacity of CuIr$_2$Se$_4$ at low temperature

Shoichi Nagataa1, Nobuhiro Matsumotoa, Ryo Endoha, Nobuo Wadab

aDepartment of Materials Science and Engineering, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran, Hokkaido, 050-8585 Japan

bDepartment of Physics, Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan

Abstract

The normal thiospinel CuIr$_2$S$_4$ exhibits a temperature-induced metal-insulator ($M-I$) transition around 230 K with structural transformation. A charge-ordering and spin-dimerization transition in CuIr$_2$S$_4$ has been found recently. In contrast to CuIr$_2$S$_4$, CuIr$_2$Se$_4$ remains metallic down to 0.4 K without the $M-I$ transition. The instability of the metallic state in CuIr$_2$Se$_4$ at high pressure has been previously reported. Heat capacity of CuIr$_2$Se$_4$ has been now measured over the temperature range of 0.5 to 11 K. The fit of the heat capacity data to $C = \gamma T + \beta T^3$ is very good with $\gamma = 6.68$ mJ mol-f.u.$^{-1}$ K$^{-2}$ and $\beta = 4.09$ mJ mol-f.u.$^{-1}$ K$^{-4}$, where γT is the electronic heat capacity.

Key words: CuIr$_2$Se$_4$; electronic heat capacity; Debye temperature; metal-insulator transition

1. Introduction

Temperature-induced metal-insulator ($M-I$) transition occurs in a thiospinel CuIr$_2$S$_4$ around 230 K with structural transformation [1–9]. Simultaneously CuIr$_2$S$_4$ undergoes a charge-ordering and spin-dimerization transition [10]. With decreasing temperature, the magnetic state changes from the Pauli paramagnetism in the high temperature metallic state to diamagnetism due to the atomic core orbital in the insulating state.

On the other hand, CuIr$_2$Se$_4$ remains metallic down to 0.4 K without the $M-I$ transition [2]. The pressure induced $M-I$ transition and the instability of the metallic state in CuIr$_2$Se$_4$ at high pressure have been investigated [11,12]. No trace of the structural transformation was observed up to 5 GPa. Heat capacity of CuIr$_2$Se$_4$ at ambient pressure has been measured over the temperature range of 0.5 to 11 K. Measurement of the heat capacity will provide insight into the nature of metallic state and the driving force behind the $M-I$ transition of CuIr$_2$S$_4$. Data of the electronic and lattice contributions to the heat capacity of CuIr$_2$Se$_4$ can be written as $C = \gamma T + \beta T^3$.

2. Experimental methods

The polycrystalline specimens were prepared by a direct solid-state reaction. Mixtures of high-purity fine powders of Cu (purity 99.99 %), Ir (99.99 %), Se (99.999 %) with an excess 0.1 wt% Se were heated in sealed quartz tubes to 1123 K and kept at this temperature for 10 days. The resultant powder specimens were reground and pressed to rectangular bars and then were heated to 1123 K for 2 days. The heat capacity measurement was made using a standard heat-pulse technique in the 3He cryostat down to 0.5 K.

3. Results and discussion

Powder x-ray diffraction pattern at room temperature confirms that CuIr$_2$Se$_4$ has the normal-spinel type
The magnetic property down to 0.5 K for CuIr2Se4 may arise from other origins. The heat capacity extrapolated over the entire temperature range is also shown as the broken line in Fig. 2 which is the result of a least-squares fitting of the data.

The Sommerfeld parameter for the electronic heat capacity, γ, is given as $\gamma = (1/3)\pi^2 k_B^2 D(\varepsilon_F)$, where $D(\varepsilon_F)$ is the band-structure density of state at Fermi level (for both spin direction). The value of $D(\varepsilon_F)$ is found to be 0.405 states eV$^{-1}$ atom$^{-1}$ for CuIr2Se4. The value of β for the Debye T^3 approximation for phonon is expressed as $\beta = (12/5)\pi^2 rN_u k_B \Theta^{-3}$, here the number of atoms per formula-unit, r, is 7 for CuIr2Se4. The Debye temperature Θ is obtained to be 149 K for the value of $r = 7$.

Acknowledgements

The authors would like to thank Mr. J. Kiuchi (University of Tokyo) for his help of experiments. The present research was supported financially by the Iwatai Naoki Foundation’s Research Grant.

References