Mixed Spin Chains of Spins with Magnitudes $\frac{1}{2}$ and 1

Ken’ichi Takanoa,1,

aToyota Technological Institute, Tenpaku-ku, Nagoya 468-8511, Japan

Abstract

Periodic mixed spin chains consisting of spins with magnitudes $\frac{1}{2}$ and 1 are studied. A nonlinear σ model method provides equations which determine gapless phase boundaries separating gapful disordered phases. Phase diagrams in the space of exchange constants are shown in the cases of periods 6 and 8.

Key words: mixed spin chain; spin gap; disordered state; nonlinear σ model

One-dimensional quantum spin models have been investigated to understand disordered states with spin gap. For a uniform spin chain, a disordered state appears if the spin magnitude is an integer and does not if it is a half-odd-integer [1]. This result is found by mapping the spin Hamiltonian into a nonlinear σ model (NLSM). The NLSM method has been developed to be applicable to inhomogeneous spin chains [2–6]. In particular an unambiguous NLSM method derived a general equation to determine phase boundaries for mixed spin chains with finite period [4].

Among various possibilities, mixed spin chains consisting of spins with magnitudes $\frac{1}{2}$ and 1 are mostly expected to be synthesized. We obtain phase diagrams in cases of several combinations of $\frac{1}{2}$’s and 1’s by applying the general NLSM formula. The Hamiltonian is

$$H = \sum_j J_j S_j \cdot S_{j+1},$$

where S_j is the spin with magnitude s_j ($= \frac{1}{2}$ or 1) at site j and J_j (> 0) is the nearest-neighbor exchange constant. We consider the case that J_j is 1 between spin $\frac{1}{2}$’s, J between spin 1’s, and J' between spin $\frac{1}{2}$ and spin 1. We restrict ourselves to the case of even period $2b$.

The magnetization of the system is determined by the condition

$$\sum_{j=1}^{b} s_{2j} = \sum_{j=1}^{b} s_{2j-1},$$

following Lieb-Mattis theorem [7]. If the condition is not satisfied, the ground state is ferrimagnetic and the magnetization is $\sum s_{2j} - \sum s_{2j-1}$.

If the condition (2) is satisfied, the ground state is singlet and Eq. (1) is mapped into an NLSM [4] with effective action

$$S_{\text{eff}} = \int \int d\tau dx \left[-i J^{(0)} \mathbf{m} \cdot (\partial_\tau \mathbf{m} \times \partial_x \mathbf{m}) + \frac{1}{2 J^{(1)}} \left(J^{(1)} - J^{(0)} \right) \left(\partial_\tau \mathbf{m} \right)^2 + \frac{J^{(0)}}{2} \left(\partial_x \mathbf{m} \right)^2 \right],$$

where

$$\frac{1}{J^{(n)}} = \frac{1}{2b} \sum_{j=1}^{2b} \left(\tilde{s}_j \right)^n (n = 0, 1, 2)$$

with $\tilde{s}_j = \sum_{k=1}^{j} (-1)^{k+1} s_k$. The coefficient of the topological term gives the gapless equation, which determines gapless phase boundaries separating gapful phases:

$$\frac{J^{(0)}}{J^{(1)}} = \frac{h}{2}. \quad (h : \text{half odd integer})$$

In the case of period 4, only the possible array satisfying Eq. (2) is $(s_1, s_2, s_3, s_4) = (\frac{1}{2}, \frac{1}{2}, 1, 1)$. The phase
Eq. (2) \[10\]. Equation (5) reduces to
the former the phase of large
extension, a singlet cluster picture [5]. For example, in
Each phase is explained by a VBS picture [9] or its
gapful phases in the former, and three in the latter.
Correspondingly, Eq. (5) reduces to
$J' = \frac{hJ}{1 - hJ + (1 - 3h)}$, \(h = \frac{1}{2} \) \hspace{1cm} (6)
$J' = \frac{4hJ}{4(2 - 3h)J + (2 - h)}$, \(h = \frac{1}{2}, \frac{3}{2} \) \hspace{1cm} (7)
respectively. These phase boundaries provide the phase
diagrams shown in Fig. 1. Here a few values of \(h \) are
allowed because of
diagrams shown in Fig. 1. Here a few values of \(h \) are
allowed because of \(J > 0 \) and \(J' > 0 \). There are two
gapful phases in the former, and three in the latter.
Each phase is explained by a VBS picture [9] or its extension, a singlet cluster picture [5]. For example, in
the former the phase of large \(J \) and large \(J' \) is explained by
Fig. 2(a) and the other phase is explained by Fig. 2(b).

In the case of period 8, arrays satisfying
Eq. (2) are \((\frac{1}{2}, \frac{1}{2}, 1, 1, 1, 1) \) and \((\frac{1}{2}, \frac{1}{2}, \frac{3}{2}, \frac{3}{2}, 1, 1, 1) \) [8].
Correspondingly, Eq. (5) reduces to
$J' = \frac{4hJ}{4(2 - 3h)J + (4 - 3h)}$, \(h = \frac{1}{2} \) \hspace{1cm} (9)
$J' = \frac{4hJ}{4(3 - 5h)J + (2 - h)}$, \(h = \frac{1}{2}, \frac{3}{2} \) \hspace{1cm} (10)
correspondingly. The phase diagrams are shown in Fig.
2. There are two gapful phases in the first and the
second cases, and three in the third.

In summary, we studied mixed spin chains consist-
ing of spins with magnitudes \(\frac{1}{2} \) and 1 by the nonlinear
\(\sigma \) model method. We provided ground-state phase di-
agrams in the space of exchange constants for the cases of
periods 6 and 8. It is expected that real mixed spin
chains are synthesized, examined experimentally and
compared to the present theory.

References

Lett. 50 (1983) 1153.
[8] We have not treated an array of, e. g., \((\frac{1}{2}, 1, 1, 1, 1) \),
since it is a period 3 system actually.
[10] The other possible arrays are \((\frac{1}{2}, 1, 1, \frac{3}{2}, 1, 1, 1), (\frac{1}{2},
\frac{3}{2}, 1, \frac{3}{2}, \frac{1}{2}, 1, 1), (\frac{3}{2}, \frac{1}{2}, 1, \frac{3}{2}, \frac{1}{2}, 1, 1), (\frac{3}{2},
\frac{3}{2}, 1, \frac{1}{2}, 1, 1, 1) \).