Ferromagnetism in Hubbard models with nearest-neighbor Coulomb repulsion

Hiromitsu Ueda a,1, Akinori Tanaka a, Toshihiro Idogaki a
aDepartment of Applied Quantum Physics, Kyushu University, Fukuoka 812-8581, Japan

Abstract

We propose a mechanism which leads to ferromagnetism in extended Hubbard models on lattices composed of triangles. We show that the ferromagnetic ground state is stabilized in the quarter filling case through a third-order electron exchange process around a triangle when both on-site repulsive interaction and nearest-neighbor one are much larger than the hopping terms. Numerical calculations for a one-dimensional lattice consisting of triangles give the evidence that the ground state is ferromagnetic not only in the quarter-filling case but also away from quarter-filling.

Key words: Hubbard model; nearest-neighbor Coulomb repulsion; groundstate; ferromagnetism

Much effort has been invested in studying the Hubbard model, the tight binding model with the on-site repulsive interaction, to understand ferromagnetism in itinerant electron systems. Through a number of analytical and numerical works and a few rigorous works [1-4], it is now known that the model exhibits ferromagnetism in certain cases, although a true theoretical understanding of itinerant electron ferromagnetism is far away.

The Coulomb interaction is a long range interaction, so that it is important to clarify effects of long distance electron-electron interactions on ferromagnetism in real materials. The extended Hubbard model which includes nearest-neighbor electron-electron interactions is usually used to study the problem. So far the importance of the direct exchange interaction in stabilizing ferromagnetism has been reported [5, 6], but literature concerning effects of nearest-neighbor Coulomb repulsion, which can be the largest among nearest-neighbor electron-electron interactions, is still limited.

The purpose of the present paper is to examine the effect of the nearest-neighbor Coulomb repulsion. It is noted that the nearest-neighbor Coulomb repulsion is independent of spin, unlike the direct exchange interaction, and how ferromagnetism is affected by it is a non-trivial problem [7]. We consider the following extended Hubbard model on a one-dimensional trestle lattice (Fig.1),

\[
H = \sum_{j, \sigma} \left(-t \ c_{j+1, \sigma}^\dagger c_{j, \sigma} + t' \ c_{j+2, \sigma}^\dagger c_{j+1, \sigma} + H.c. \right) + U \sum_{j} n_{j, \uparrow} n_{j, \downarrow} + V \sum_{j, \sigma, \tau} n_{j, \sigma} n_{j+1, \tau}, \tag{1}
\]

where \(c_{j, \sigma}^\dagger, c_{j, \sigma} \) and \(n_{j, \sigma} \) are the creation, annihilation and number operators for an electron with spin \(\sigma \) at the \(j \) th site, respectively. The density of electrons is defined by \(n = N_e / L \), where \(N_e \) is the number of electrons, and \(L \) is the total number of sites. We show that the ferromagnetic phase exists in the ground state of Hamiltonian (1) at the quarter-filling by a perturba-
tion theory and away from quarter-filling by numerical calculations.

First, we consider the case of $U \to \infty$ and $V \to \infty$ at the quarter-filling ($n = 1/2$). In this limit, the states in which each even site is occupied by just one electron are the ground states. There is no spin-spin correlation in these states, i.e., the ground states are paramagnetic.

Next, relaxing the condition as $t, t' \ll U$, we derive the effective Hamiltonian. The first-order perturbation theory in $1/V$ is vanishing and the second-order one only shifts the energy by a constant, but through the third-order perturbation process (Fig.2) we obtain the following effective Hamiltonian:

$$H_{\text{eff}} = -4t'(t/V)^2 \sum_j \left(S_j \cdot S_{j+2} - \frac{1}{4} \right) + \text{const}, \quad (2)$$

where S_j is an operator of a spin-1/2 at site j. This is just a ferromagnetic Heisenberg model.

![Fig. 2. The third-order process leading to ferromagnetic effective exchange $J_{\text{eff}} = -4t'/(t/V)^2$.](image)

Furthermore, assuming $t, t' \ll U$, we take into account the lowest term in $1/U$. The term which should be added to the effective Hamiltonian (2) is $4[(t')^2/U] \sum_j (S_j \cdot S_{j+2} - \frac{1}{4})$, i.e., a kinetic exchange one. Therefore, whether the effective Hamiltonian for large values of U and V favors ferromagnetism or not will be decided by the competition between a ferromagnetic term and an antiferromagnetic one, in other words, whether $U \geq U_c \sim t'/(V/t)^2$ or not.

Figure 3 is a result of exact numerical diagonalizations with open boundary conditions. The result supports the mechanism for ferromagnetism by the third-order process for $t, t' \ll U, V$. Our numerical calculations also indicate that the ground states are ferromagnetic for sufficiently large values of U even if the value of V is small, in which the perturbation theory breaks down.

Finally, we discuss the case of $n < 1/2$. Figure 4 is a result of exact numerical diagonalizations with open boundary conditions. This result shows that for sufficiently large values of U and V the ground states are saturated ferromagnetic over a wide range of $n < 1/2$. In particular, we find that ferromagnetism is most stabilized in a certain density ($n \sim 0.4$) of electrons away from the quarter-filling. This indicates that greater mobility of electrons in addition to the ferromagnetic exchange interaction arising from the third-order electron exchange process in $1/V$ generates ferromagnetism successfully.

In this paper we investigated the one-dimensional trestle lattice, and it is expected that the present mechanism for ferromagnetism can work for other lattices composed of triangles, such as bcc and fcc, provided U and V are much larger than hopping terms.

![Fig. 3. The phase diagram for $n = 1/2, t = 1.0$ and $t' = 0.2$. The solid line is $U = t'/(V/t)^2$, and U_c which is represented by solid circles are estimated by a sample-size scaling of numerical calculations. In the inset we display the sample-size scaling for some values of V.](image)

![Fig. 4. The phase diagram for $t = 1.0, t' = 0.2$ and $V = 10$.](image)

References