Spin fluctuations in heavy-Fermion compounds YbZnCu$_4$ and YbAuCu$_4$, investigated by 63Cu NMR/NQR

Takehide Koyamaa, Takeshi Mitoa, Shinji Wadaa, John L. Sarraob,

a Department of Material Science, Graduate School of Science & Technology, and Department of Physics, Faculty of Science, Kobe University, Nada, Kobe 657-8501, Japan

b Los Alamos National Laboratory, Mail stop K 762, Los Alamos, NM 87545, USA

Abstract

We have investigated microscopically the heavy-Fermion properties of YbZnCu$_4$ and YbAuCu$_4$ with 63Cu NMR and PQR measurements. Both the isotropic and axial Knight shifts for each of the compounds showed a Curie-Weiss-type behavior, which is indicative of the localized Yb$^{3+}$ moments. The nuclear spin-lattice relaxation rate (T_1T)$^{-1}$ for YbZnCu$_4$ above 1.4K and for YbAuCu$_4$ above \sim 50 K was proportional to the uniform susceptibility χ, indicating that the correlation time τ_c^{-1} of Yb-spins is nearly independent of temperature. (T_1T)$^{-1}$ for YbAuCu$_4$ below \sim 50 K exhibited a prominent increase associated probably with the decrease in τ_c^{-1} to the Kondo fluctuation rate $\tau_K^{-1} = k_B T_K/\hbar$.

Key words: heavy Fermion; spin fluctuations; Ytterbium cuprate;

The YbXCu$_4$ series (X=rate transition-metal elements) with cubic C15b (AuBe$_5$)-type crystal structure shows a wide variety of physical properties with the species of X atoms. Among the compounds, YbAuCu$_4$ is a prototypical heavy-Fermion compound (electronic specific heat coefficient γ \sim150 mJ/mol, Kondo temperature T_K \sim 2 K) and exhibits antiferromagnetic ordering below 1K [1]. While YbZnCu$_4$ (γ \sim150 mJ/mol, T_K \sim30 K) has been relatively less studied. The magnetic susceptibility χ of YbZnCu$_4$ showed a Curie-Weiss-type behavior at high temperatures with a ferromagnetic increase below \sim30 K. From the large upturn in the electronic resistivity at low temperatures, YbZnCu$_4$ has been suggested to be a failed Kondo semimetal [1].

In this paper, we report the results of the nuclear magnetic resonance (NMR) and pure quadrupole resonance (PQR) of 63Cu in YbZnCu$_4$ and YbAuCu$_4$, which can provide microscopic information on the static and dynamical properties of Yb spins.

1 E-mail:koyama@cphys.cla.kobe-u.ac.jp

Fig. 1. Temperature dependence of the isotropic and axial knight shift for YbZnCu$_4$ and YbZnCu$_4$.

The 63Cu NMR measurement was carried out under magnetic fields of \sim7 T with a phase-coherent pulsed
spectrometer operating at a constant frequency of 75 MHz. The NMR spectra exhibit the general electric-quadrupole split powder-pattern, and the values of the isotropic Knight shift \(K_{\text{iso}} \) and axial Knight shift \(K_{\text{ax}} \) are deduced from the spectrum analysis described in ref. [2]. For the temperatures below \(\sim 40 \) K, we could not obtain any reliable values of the Knight shift, because of the severe broadening of the line width. Fig. 1 shows the temperature dependence of \(K_{\text{iso}} \) and \(K_{\text{ax}} \) for YbZnCu\(_4\). The data for YbAuCu\(_4\) in the figure were cited from our previous report [2]. Both \(K_{\text{iso}} \) and \(K_{\text{ax}} \) for each of the compounds exhibit the Curie-Weiss type behavior, that can be ascribed to the localized Yb\(^{3+}\) moment. The Knight shift versus susceptibility plots are on a straight line, and the slope gives the value of anisotropic and isotropic terms of the transferred hyperfine coupling constants \(H_{\text{hf}}^{\text{iso}}(\text{tr}) \) and \(H_{\text{hf}}^{\text{ax}}(\text{tr}) \) as follows: -1.3 and -1.4 kOe/\(\mu_B \) for YbZnCu\(_4\); -0.97 and -1.2 kOe/\(\mu_B \) for YbAuCu\(_4\).

The spin-lattice relaxation rate \(T_1^{-1} \) of \(^{63}\)Cu was measured at peak intensity of the PQR line: 8.9 MHz for YbAuCu\(_4\); 12.6 MHz for YbZnCu\(_4\). Fig. 2 shows the temperature dependence of \(T_1^{-1} \) for each of the compounds. The data for YbAuCu\(_4\) are in good agreement with that reported by Nakamura et al. [3]. The \(T_1^{-1} \) data for each of the compounds do not obey the Korringa-like relation \((T_1T)^{-1} = \text{const.} \), within the present experimental temperature range. Then we replotted in Fig. 3 the \((T_1T)_{\text{tr}}^{-1} \) data against the corresponding \(\chi \) data. For the relaxation process to the fluctuating local moments with the correlation time \(\tau_f \), the relaxation rate is given by [4]

\[
(T_1T)_{\text{tr}}^{-1} = 2\gamma_n^2 k_B H_{\text{hf}}(\text{tr})^2 \frac{\chi}{\mu_B N} \tau_f, \tag{1}
\]

assuming a Lorentzian shape of fluctuation spectrum and \(\chi(q) \sim \chi(0) \). Here, \(\gamma_n \) is the nuclear gyromagnetic ratio, \(z \) the number of neighboring spins, and \(N \) the Avogadro’s number. The linear dependence of \((T_1T)^{-1} \) on \(\chi \) for YbZnCu\(_4\) above 1.4 K and for YbAuCu\(_4\) above \(\sim 50 \) K indicates that \(\tau_f \) is nearly independent of the temperature. This is consistent with the strongly localized scheme for the 4f moments in these compounds. Taking the experimental values of \((T_1T)^{-1} \) and \(H_{\text{hf}}^{\text{iso}}(\text{tr}) \) at high temperatures, we can estimate an order of \(f \) spin fluctuation energy \(T_f = h/k_B \tau_f \) as \(\sim 100 \) K for YbZnCu\(_4\) and \(\sim 20 \) K for YbAuCu\(_4\), respectively.

For YbAuCu\(_4\), \((T_1T)^{-1} \) below \(\sim 50 \) K exhibited a prominent increase, and deviates from the linear dependence on \(\chi \). If we bravely use eq. (1) for the \((T_1T)^{-1} \) data below \(\sim 50 \) K, though it is not really very satisfactory for the correlated spin system, \(\tau_f^{-1} \) decreases monotonously and approaches the order of 1 K. It is worth noting that \(\tau_f \sim 1 \) K can reasonably be compared with \(T_K \). The temperature independent \(\tau_f \sim 1 \) for YbZnCu\(_4\) down to 1.4 K suggests that the Kondo temperature for YbZnCu\(_4\) is much lower than \(T_K \sim 30 \) K estimated from the \(\chi \) data. The lack of a predominant Kondo compensation of 4f moments in YbZnCu\(_4\) down to \(\sim 1 \) K is considered to be consistent with the Kondo semimetal behavior observed in the resistivity.

References