Monte Carlo Study of Pseudo-Gap Temperature T^\ast within JJA Model

C. Kawabataa,*, M. Takeuchia, N. Hayashib, F. Onoc, S. R. Shenoyd, A. R. Bishope

aFaculty of Environmental Science and Technology, Okayama University, Okayama 700-8530, Japan
bComputer Center, Okayama University, Okayama 700-8530, Japan
cDepartment of Physics, Okayama University, Okayama 700-8530, Japan
dCondensed Matter Group, Abdus Salam International Centre for Theoretical Physics, Trieste 34100, Italy
eTheoretical Division, Los Alamos National Laboratory, Los Alamos, NM87545, U.S.A.

Abstract

We study pseudo-gap temperature T^\ast of high-T_c superconductors by a Monte Carlo simulation of anisotropic 3D Josephson Junction Array (JJA) model based on the Ginzburg-Landau theory. We investigate T^\ast both in the cases of zero external current and finite external current I in the JJA. It is found that, the external current I depresses only a little the pseudo-gap temperature T^\ast, while the superconducting critical temperature T_c is much affected by I.

Key words: Pseudo-gap temperature, High-T_c cuprate superconductor, Josephson Junction Array model, Ginzburg-Landau theory

Much attention has been focused on the pseudo gap of high-T_c cuprate superconductors. On the basis of the Josephson Junction Array (JJA) model for the high-T_c cuprate superconductors [1–4], we have investigated the pseudo-gap temperature T^\ast and the superconducting critical temperature T_c. In this paper, we report our result of the Monte Carlo simulation for the effect of the external current I on T^\ast and T_c.

We model the ceramic high-T_c materials as a JJA which consists of weakly coupled superconducting grains on an anisotropic 3D lattice (i.e., a stack of 2D-lattice layers) [1–4]. The grain at the lattice site i is characterized by the phase θ_i and the amplitude $|\phi_i|$ of the superconducting order parameter $\phi_i = |\phi_i| \exp(i\theta_i)$.

In previous papers [5,6], we performed the Monte Carlo simulation with a Hamiltonian in which only the phase θ_i was taken into account, and could investigate the effect of I on T_c only. In this paper, we investigate not only T_c but also T^\ast by considering both the phase θ_i and the amplitude $|\phi_i|$. Our effective Hamiltonian is given as

\[
F_{\text{eff}} = F(\{\theta_i, |\phi_i|\}) - T \sum_i \ln(|\phi_i|) \\
= F_0 + F_1 - T \sum_i \ln(|\phi_i|),
\]

where

\[
F_0 = - \sum_{i,j} |\phi_i|^2 \left[\cos(\theta_i - \theta_j) - 1 \right] \\
- \alpha \sum_{i,k} |\phi_i|^2 \left[\cos(\theta_i - \theta_k) - 1 \right] \\
- \sum_{i,j} I \cdot [\theta_i - \theta_j],
\]

\[
F_1 = \frac{1}{2} \sum_{i,j} (|\phi_i| - |\phi_j|)^2 \\
+ \frac{\alpha}{2} \sum_{i,k} (|\phi_i| - |\phi_k|)^2
\]

* Corresponding author. Fax: +81-86-273-6750
Email address: kawabatact@nifty.com (C. Kawabata).
Here, \(\sum_{i,j} \) means the summation over the neighboring intra sites in a 2D layer and \(\sum'_{i,k} \) over the neighboring inter sites between the layers. The parameter \(\alpha \) of the system anisotropy corresponds to \(\Gamma_2 \) of Ref. [7]; \(\alpha \to 1 \) (3D limit) and \(\alpha \to 0 \) (2D limit). The parameter \(A \) corresponds to \((a_\parallel/\xi_\parallel)^2\) and \(T_0 \) corresponds to \(T_{MF} \) [7].

We perform the Monte Carlo simulation on the 3D JJA system [Eqs. (1)–(3)] with \(A = 1 \) and the anisotropy ratio \(\alpha = 0.01 \). The system size is \(20 \times 20 \times 20 \) with periodic boundary conditions. \(T_c \) is defined as the temperature at which the susceptibility \(\chi = \sum_{i,j} \langle \cos \theta_i \cos \theta_j \rangle \) diverges [5,6]. The symbol \(\langle \cdots \rangle \) represents the statistical average. \(T^* \) is defined as the temperature at which \(\sum_i \langle |\phi_i| \rangle = 0 \). In Table 1, we show the result obtained by the Monte Carlo Simulation. It is noticeable that, while the superconducting critical temperature \(T_c \) is much affected by \(I \) (namely, \(\sim 50\% \) decrease of \(T_c \)), the external current \(I \) depresses only a little the pseudo-gap temperature \(T^* \).

We hope that this result (i.e., the difference in the \(I \) sensitivity between \(T^* \) and \(T_c \)) can be observed experimentally by applying the external current to the high-\(T_c \) cuprate superconductors and simultaneously measuring the pseudo-gap temperature and the superconducting critical temperature. Such observations are expected to be helpful to identify the origin of the pseudo gap in the high-\(T_c \) cuprates, i.e., to identify whether or not the separation between the pseudo-gap temperature and the superconducting critical one is described by the anisotropic 3D JJA- and XY(phase)-model scenarios [1–8] for the superconductivity in the high-\(T_c \) cuprates.

We perform the Monte Carlo simulation on the 3D JJA system [Eqs. (1)–(3)] with \(A = 1 \) and the anisotropy ratio \(\alpha = 0.01 \). The system size is \(20 \times 20 \times 20 \) with periodic boundary conditions. \(T_c \) is defined as the temperature at which the susceptibility \(\chi = \sum_{i,j} \langle \cos \theta_i \cos \theta_j \rangle \) diverges [5,6]. The symbol \(\langle \cdots \rangle \) represents the statistical average. \(T^* \) is defined as the temperature at which \(\sum_i \langle |\phi_i| \rangle = 0 \). In Table 1, we show the result obtained by the Monte Carlo Simulation. It is noticeable that, while the superconducting critical temperature \(T_c \) is much affected by \(I \) (namely, \(\sim 50\% \) decrease of \(T_c \)), the external current \(I \) depresses only a little the pseudo-gap temperature \(T^* \).

We hope that this result (i.e., the difference in the \(I \) sensitivity between \(T^* \) and \(T_c \)) can be observed experimentally by applying the external current to the high-\(T_c \) cuprate superconductors and simultaneously measuring the pseudo-gap temperature and the superconducting critical temperature. Such observations are expected to be helpful to identify the origin of the pseudo gap in the high-\(T_c \) cuprates, i.e., to identify whether or not the separation between the pseudo-gap temperature and the superconducting critical one is described by the anisotropic 3D JJA- and XY(phase)-model scenarios [1–8] for the superconductivity in the high-\(T_c \) cuprates.

References

Table 1

<table>
<thead>
<tr>
<th>(I)</th>
<th>0</th>
<th>0.5</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T^*)</td>
<td>0.26</td>
<td>0.24</td>
<td>0.22</td>
</tr>
<tr>
<td>(T_c)</td>
<td>0.09</td>
<td>0.09</td>
<td>0.05</td>
</tr>
</tbody>
</table>

