Multiple-superconducting amplitudes in multi-layer high-T_c cuprates

Michiyasu Mori 1, Takami Tohyama, Sadamichi Maekawa
Institute for Materials Research, Tohoku University Sendai 980-8577, Japan

Abstract

We study the amplitude of the superconducting (SC) order parameter in each CuO$_2$ plane in the multi-layer high-T_c cuprates by calculating the tunneling conductance of the superconductor/insulator/superconductor junction. Comparing the tunneling parallel and perpendicular to the CuO$_2$ plane, we find that the multiple SC amplitude can be detected only in the parallel tunneling.

Key words: multi-layer cuprate; multiple gap; tunneling Hamiltonian; SIS junction

The multi-layer high-T_c cuprates have several CuO$_2$ planes within a conducting block, in which the doping rate in the outer CuO$_2$ planes (OPs) is different from that in the inner CuO$_2$ planes (IPs) [1]. Since the superconducting (SC) amplitude, i.e., the amplitude of the SC order parameter, depends on the doping rate, it is possible that the OP’s SC amplitude is different from the IP’s SC amplitude [2]. Such multiple SC amplitude has been studied with the nuclear-magnetic-resonance (NMR) measurement and been estimated by the temperature dependence of the Knight shift and the relaxation time [2]. In four-layer compounds, a smaller SC amplitude seems to couple to a larger SC amplitude [2]. The difference between them should be also observed with the tunneling measurement that is a direct probe of the SC amplitudes.

For the conducting block, we adopt the Hamiltonian as,

\[H = H_0 + H_\perp + H', \]

\[H_0 = \sum_{k,\sigma,n} \xi(k) c_{k,\sigma,n}^\dagger c_{k,\sigma,n}, \]

\[H_\perp = \sum_{k,\sigma,(n,m)} \epsilon_\perp(k) c_{k,\sigma,n}^\dagger c_{k,\sigma,m}, \]

\[H' = \sum_{k,n} \left[\Delta_n(k) c_{k,\uparrow,n}^\dagger c_{-k,\downarrow,n}^\dagger + \Delta_n^*(k) c_{-k,\downarrow,n} c_{k,\uparrow,n} \right], \]

\[\xi(k) = a \cdot (k_x^2 + k_y^2) - \mu, \]

\[\epsilon_\perp(k) = (t_\perp/4) \left\{ \cos(k_x) - \cos(k_y) \right\}^2, \]

\[\Delta_n(k) = \Delta_n \left\{ \cos(k_x) - \cos(k_y) \right\}, \]

where $c_{k,\sigma,n}^\dagger (c_{k,\sigma,n})$ is the electron creation (annihilation) operator with momentum k, spin σ. The summa-

1 E-mail: morimich@imr.tohoku.ac.jp

Preprint submitted to LT23 Proceedings 21 June 2002
tion \((n,m)\) runs for adjacent pairs of planes. The \(\mathrm{CuO}_2\) planes are indicated by \(n,m = 1,2,3\). Hereafter, the IP and the OP are assigned to 1 and 2 (3), respectively. Other parameters are chosen as, \(a = 1.2, \mu = 3.0, \quad t_\perp = -1.0, \Delta_1 = 0.5, \Delta_2 = \Delta_3 = 1.0\). The tunneling Hamiltonian is given as,

\[
H_T = \sum_{k,\sigma,n,m} T_{n,m} \left(\tilde{c}_{k,\sigma,n}^\dagger c_{k,\sigma,m} + \text{H.c.} \right),
\]

where one superconductor is distinguished from the other by tilde. The tunneling direction is imposed on the tunneling matrix elements. For the perpendicular tunneling,

\[
T_{n,m} = T \delta_{n,2}\delta_{m,3}, \quad \tag{3}
\]

and for the parallel tunneling,

\[
T_{n,m} = T \delta_{n,m}, \quad \tag{4}
\]

where \(\delta_{n,m}\) is the Kronecker’s delta and we choose \(T = 1.0\). The tunneling conductance is calculated within the second order of \(T\) and the \(k\)-summation is carried out on \(2000 \times 2000\) \(k\)-points in the area, \(0 \leq k_x, k_y \leq \pi\). The Dirac’s delta function that appears in the equation of the DOS and the tunneling conductance is replaced by the Lorentzian with the broadening, \(\eta = 0.005\).

In Fig. 1 (a), the IP’s and OP’s DOS are plotted by dotted and solid lines, respectively. Around \(\omega = \pm 1.0\) corresponding to the OP’s SC amplitude, the OP’s DOS has dominant peaks split by the inter-layer coupling. The OP’s DOS has another tiny peak around \(\omega = 0.5\) corresponding to the OP’s SC amplitude, although almost weight is contained in the OP’s DOS. Each SC amplitude can be observed in the DOS in each \(\mathrm{CuO}_2\) plane. If it is difficult to measure the IP’s DOS, the multiple SC amplitude is not sufficiently visible.

In Fig. 1 (b), the tunneling conductances, \(dI/dV\), parallel and perpendicular to the \(\mathrm{CuO}_2\) plane are plotted as functions of the voltage, \(V\), by solid and broken lines, respectively. In the perpendicular direction, \(dI/dV\) increases toward \(V = 2.0\) and begins to decrease around \(V = 2.0\). This voltage corresponds to \(2\Delta_3 = 2\Delta_3 \sim 2.0\) on the Fermi energy, while we can not find a peak around \(2\Delta_1 \sim 1.0\). On the other hand, in the parallel direction, we can find a clear peak around \(2\Delta_1\) in addition to the peak around \(2\Delta_2\). Therefore, the SIS break junction parallel to the \(\mathrm{CuO}_2\) plane can show the multiple SC amplitude behavior.

In summary, we calculated the tunneling conductance of SIS junction parallel and perpendicular to the \(\mathrm{CuO}_2\) plane. We found that the multiple SC amplitude behavior is visible in the parallel direction.

The authors would like to thank S. E. Barnes for valuable discussions. This work was supported by the Grant-in-Aid from Ministry of Education, Culture, Sports, Science and Technology of Japan, and CREST.

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{fig1.png}
\caption{(a) The DOS in the OP (solid line) and the IP (dotted line) are plotted as functions of the energy, \(\omega\). Two OPs are identical. (b) The tunneling conductance, \(dI/dV\), is plotted as a function of the applied voltage, \(V\). The tunneling perpendicular and parallel to the \(\mathrm{CuO}_2\) plane are drawn by broken and solid lines, respectively. The value of the conductance in the parallel direction is reduced to 1/3 for the graphical convenience.}
\end{figure}

One of authors (S. M.) acknowledges support of the Humboldt Foundation.

\section*{References}

