Far-Infrared Optical Reflectance Spectra in Sintered MgB$_2$ Ceramics

Hajime Shibataa, Shinji Kimuraa, Satoshi Kashiwayaa, Akira Iyoa, Takashi Yanagisawaa, Kunita Okaa, Yoshikazu Mitsugia, Yukio Tanakab

aNational Institute of Advanced Industrial Science and Technology, Tsukuba Central 2, Tsukuba, Ibaraki 305-8568, Japan
bNagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan

Abstract

Optical reflectance spectra $R(\omega)$ of sintered MgB$_2$ ceramics were observed for $\omega = 30 \sim 110$ cm$^{-1}$ at $T = 5 \sim 47$ K. A significant raise in $R(\omega)$ below 110 cm$^{-1}$ is observed below T_c, which can be attributed to the evolution of the superconducting energy gap. The results of the calculation of $R(\omega)$ at $T = 0$ K for anisotropic superconductors qualitatively reproduce the observed spectral shape, which suggests that MgB$_2$ is an anisotropic superconductor.

Key words: MgB$_2$; optical properties; far-infrared spectra; anisotropy

1. Introduction

The recently discovered superconductor MgB$_2$ with T_c of 39 K is of great current interest [1]. However, there is no consensus yet about the nature of its superconductivity such as size, number and anisotropy of the order parameter [2].

Optical reflectance spectra $R(\omega)$ can be calculated using optical conductivity $\sigma(\omega)$. In order to describe $\sigma(\omega)$ of MgB$_2$ in the normal state, we used the Drude model; $\sigma(\omega) = \epsilon_0 \omega_p^2 / (\gamma - i\omega)$, where ϵ_0, ω_p and γ are the dielectric constant in vacuum, plasma frequency and dumping constant, respectively. The value of γ is given by $\gamma = \epsilon_0 \omega_p^2 \rho$, where ρ is the value of the electrical resistivity. The value of ω_p was reported to be ~ 13600 cm$^{-1}$ [3], and the value of ρ at $T = 40$ K in our samples was $\sim 8.3 \ \mu\Omega cm$. Therefore, the value of γ at 40 K in our samples is estimated to be ~ 30 cm$^{-1}$, which is smaller than the value of 2$\Delta(0)$ estimated above. This result suggests that MgB$_2$ is not a dirty-limit superconductor.

1 E-mail: h.shibata@aist.go.jp
is not a dirty-limit superconductor, we assumed $\omega_n = \omega_p = 13600$ cm$^{-1}$ at $T = 0$ K. The calculated $R(\omega)$ spectrum at $T = 0$ K is shown in Fig. 1 as a solid curve.

A prominent feature of a solid curve in Fig. 1 is the evolution of a sharp reflectance edge at $\omega = 2\Delta(0)$. Therefore, it can be expected that $R(\omega)$ of MgB$_2$ also exhibits the reflectance edge at $\omega = 2\Delta(0)$ at sufficiently low T, if it has an isotropic order parameter. In this paper, we report on a study of the $R(\omega)$ of sintered MgB$_2$ ceramics for $\omega = 30 \sim 110$ cm$^{-1}$ at $T = 5 \sim 47$ K.

2. Experimental

MgB$_2$ ceramics were sintered under high pressure of 3.5 GPa at 1200 C for 2 hours. T_c of the samples was 39 K. The sample surface was polished mechanically to obtain mirror-like surface. FIR optical reflectance spectra $R(\omega)$ were measured using a BOMEM DA8 Fourier-transform interferometer with a Hg arc lamp source and a Si:B bolometer. The spectral resolution was 0.5 cm$^{-1}$. The incident FIR radiation was nominally unpolarized, and was introduced normal to the sample surface for the measurement.

3. Results and Discussion

$R(\omega)$ observed at $T = 5 \sim 36$ K normalized by that observed at $T = 47$ K are shown in Fig. 2. Interference fringes in the spectra are due to multiple internal reflections within the optical window of the Si:B bolometer. A significant raise in $R(\omega)$ below T_c is observed in Fig. 2 below 110 cm$^{-1}$, which can be attributed to the evolution of the superconducting energy gap. However, we could not observe the emergence of the significant reflectance edge within the region of ω explored in this work. Therefore, the results suggest that the order parameter of MgB$_2$ is not isotropic.

In this work, we assume that the order parameter of MgB$_2$ has the following uniaxial anisotropy; $\Delta_2 = \Delta_1 + \Delta_2 \cos 2\theta$, where θ is the angle of k relative to k_z. Recently, a new theory to calculate $\sigma(\omega)$ of anisotropic superconductors has been developed [5]. We have applied the theory to calculate $\sigma_1(\omega)$ of MgB$_2$ at $T = 0$ K, where the value of Δ_1 and Δ_2 were assumed to be 30 cm$^{-1}$ and 20 cm$^{-1}$, respectively. The results are shown in the form of the relative conductivity ratio $\sigma_1(\omega)/\sigma_{1n}(\omega)$ in Fig. 3 as solid circles, where $\sigma_{1n}(\omega)$ and $\sigma_{1s}(\omega)$ are $\sigma_1(\omega)$ at $T = 0$ K and T_c, respectively. The result of the M-B theory for $2\Delta(0) = 60$ cm$^{-1}$ is also shown in Fig. 3 as a solid curve. By using the result of $\sigma_1(\omega)$ shown in Fig. 3, we have calculated $R(\omega)$ of MgB$_2$ at $T = 0$ K, where the two-fluid model were used for $\sigma_2(\omega)$. The results are shown in Fig. 2 as solid circles, which does not exhibit the significant reflectance edge at $\omega \sim 2\Delta_1$, and qualitatively reproduce the spectral shape of $R(\omega)$ shown in Fig. 2. Therefore, it is suggested that the order parameter of MgB$_2$ is anisotropic.

4. Conclusion

We have measured the $R(\omega)$ of sintered MgB$_2$ ceramics for $\omega = 30 \sim 110$ cm$^{-1}$ at $T = 5 \sim 47$ K. The results of the calculation of $R(\omega)$ at $T = 0$ K for anisotropic superconductors qualitatively reproduce the observed spectral shape, which suggests that MgB$_2$ is an anisotropic superconductor.

References